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SUMMARY

De Finetti’s "Fundamental Theorem of Probability” is reformulated as a
computable linear programming problem. The theorem is substantially
extended, snd shown to have fundamental implications for the theory and
practice of statistics. It supports an operational meaning for the partial
assertion of prevision via asserted bounds. We extend the theorem to
apply to general quantities, to allow bounds and orderings on previsions
as input to the programming problem, and to yield bounds, even on
conditional previsions, as output. Consequences include the ultimate
strengthening of any probability inequality based on linear constraints,
such as the Bienaymé-Chebyshev inequality and an inequality related to
Kolmogorov's 1nequality, but based only on the judgement of a sequence
of quartities as exchangeable. Included in the wide variety of potential
applications are the safety assessment of complex engineering systems,
the analysis of agricultural production statistics, and a synthesis of
subjective judgments in macroeconomic forecasting. In our discussiori,
prevision is explicitly recognized as a completion of the notion of
logical assertion, introduced by Frege.

Keywords: LOGICAL DEPENDENCE; SUBJECTIVE PROBABILITY; COHERENCE; BOUNDS OM
PREVISION; ORDINAL PROBABILITY; LINEARPROGRAMMING; BIENAYME-CHEBYSHEV
INEQUALITY; KOLMOGOROV'S INEQUALITY: EXCHANGEABILITY; LAWS OF LARGE NUMBERS .
LOGICAL ASSERTION.
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1. INTRODUCTION

WITHOUT elaborating on the choice of name for his theorem, de Finetti (1970,
3.10.1) announced as the “Fundamental Theorem of Probability” a derivation of
bounds on the numerical assessment of the prevision of an event, bounds that are
required by and Insure its conerence with coherent previsions already asserted
for N other events. The logic behind the theorem had already been presented in
his Paris lectures, “Foresight: Its Logical Laws, Its Subjective Sources” (1937,
Ch. 1), and the importance of the result had been recognized in the analysis of
finite additivity in his paper "On the Axiomatization of Probability” (1949, S.9).
Inthe | .er paper, the result is expressed in terms that identify the limitations
under which a coherent prevision function specified over a linear space of events
can be extended to a coherent function over a larger linear space. The analysis
there 1s presented at such a level of mathematical abstraction that it has drawn
scant attention. The technical prelude to the Fundamental Theorem in de Finett)
(1970) is prolonged over at ‘east 70 pages of introductory concepts and
examples. Particularly important is the discussion of logical dependence,
logical independence, and logical sermi-dependence among events.

If a poll were taken of members of statistics societies throughout the
worid, we doubt that even | percent would say they considered “the fundamental
theorem of probability™ to be the result so designated by de Finetti. Even among
statisticians who would call themselves “Bayesian®, we doubt that the figure
would reach 5 percent. In small groups of statisticians to whom we have
addressed the question of identifying the fundamental theorem of probability,
responses have ranged from “"the Law of Large Numbers®, to “the Central Limit
Theorem”, to “the Law of the Iterated Logarithm®, to “There is no fundamental
theorem of probability.” A bold Bayesian would sometimes suggest Bayes'’
Theorem, or even de Finetti's theorem on the representation of exchangeable
distributions.

The present paper Is meant to elucidate the Fundamental Theorem In 2
constructive computable form, to extend it in useful ways, and to reveal its
fundamental character by showing its comprehensive applicability and the
resolution it provides for substantive issues in probability and statistics. After
prelimindry definitions and corcepts (Section 2), we characterize the theorem s
a linear prograrnming problem (Section 3), first suggested by Bruno and Gilio
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(1980) and extended by Rahman (1987). The Fundamental Theorem in linear
programming form provides a computational procedure whereby any knowledge
you actively assert via your previsions for N specific quantities enters as input
intd the program in terms of linear restrictions. The maximum and minimum of
an objective function, computed as output from the program, serve as bounds o
the prevision you may assert for a further specific quantity if it is to cohere
with the N previsions you have already asserted as input. These are the
narrowest such bounds. They guarantee the coherence of the full set of N+1
asserted previsions if the first N are themselves coherent.

Af er a careful discussion, we interpret the Fundamental Thecrem of
Probability to suppert the process of asserting bounds on previsions as ar
operationally meaningrul representation of uncertain know ledge. Wwith this
interpretation, the theorem provides a standpoint for evaluating the
controversial discussions of interval probabilities that have centinued
throughout this century in works such as Keynes {1921), Borel (1324), Koopman
(1940), Reichenbach (1949), Good (1950), Smith (1961), de Finett and Savage
(1362), Scott (1964), Fishburn (1965,1985), Dempster (1967), Suppes
(1974,1981), Shafer (1976), and Lemer (1986). (The list is not exhaustive.)
We expand the Furdamental Theorem to allow assertions of bounds
on ircompletely assessed previsions as the primary input specifications of
uncertain knowledge. Even more generally, assertions of mere orderings of
prevision and other linear inequalities are shown to be meaningful 1Inputs, with
numerical implications computable within the linear programming framework.

Finally, we extend the theorem beyond the domain of events to a
fundamental theorem of prevision for general quantities (Section 4). Any
prevision inequality holding under linear equality or inequality constraints
receives its strongest possible statement as a consequence of our general
resuit. One corollary strengthens and completes the Bienaymé-Chebyshev
Inequality in the context of uncertainty about bounded discrete measuremants.
Another gives an inequality related to Kolmogerov's inequality, but invelving
quantities judged as exchangeable. A final extension has implications for
cohering assertions of conditional previsions. The extension to conditional
prevision requires a nonlinear programming computation, for which we provide 2
simple algorithm. The cutput bounds on conditional previsions have direct
applicability 1n operationai-subjective statisticai methods.
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Our results are illustrated by small-ccale computations (Section S).
From the immense scop2 of potential practical applications, we suggest examples
in ergineering, agronomy, and macroeconomic forecasting. Corcluding comments
(Section 6) dwell on the logical category of prevision as an assertion, in the
sense introduced by Frege (1879). In this light, we recognize the Fundamental
Theorem of Prevision as a generalization of the deductive closur< result of
Hilbert and Ackermann (1938, 1.§9.).

2. PRELIMINARIES

Most of this section is a concise summary of concepts that are
developed by de Finetti with extensive examples in chapters 2 and 3 of his
treatise (1970). Readers who are not familiar with the de Finetti approach are
asked to pay special attention to the definitions. Familiar sounding terms are
often defined with a different meaning and syntax than in the measure-theoretic
characterization of probability. For example, an event in the usual formulation
is 3 set; whereas in our terminology, an event is 3 quantity, a number.

A quantity, X, is the numerical outcome of a particular operationaliy
defined measurement. Hence, X is a well defined number, although its numerical
value may be unknown at the time X is contemplated. The set of all numbers
that are possible results of performing the operation is called the rea/m of the
quantity, denoted by R(X). Typically, it has a finite number of elements, called
the s/ze of the realm. The analysis in this paper is confined to the realistic
case of a realm with finite size. A quantity, E, whose realm is R(E) = {0,1} is
called an everr. If E is an event, then £ = (1-€) is also an event. Definitional
restrictions on events specify /agical/ relations among them. For example, N
events are said to be /compatiple if their definitions imply that their sum
cannot exceed 1. Similarly, N events are exfaust/ve if their sum cannot be less
than 1. N events are said to constitute a partition if they are both incompatible
and exhaustive, that is, if their sum necessarily aquals 1. The individual events
in this case are called constituents of the partition.

Any N events (N 2 1) generate apartition with S(N) constituents. S(N;
IS called the s/.ze of the partition generated by E,, ... .E,. The constituents of

this partition are those S(N) summands in the multiplicative expansion ¢f the
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expression | = TT,_ N (Ej*E;) that are events. This is to say, their realms contain

both (and only) the numbers 0 and 1. A typical summand in this expansion is a
product of N events, such as E,E,E5E4Ey_Ey. There are, of course, 2N summands

of this form. But some of them may not be events, since some of the summands
necessarily equal zero if there are logical restrictions among the multiplicard
events that generate the partition. For a simple example, suppose N=2, and

E, = 1-Ey. Then neither EE, nor E,E, are events, since they both necessarily
equal 0. But both E,E, and E €, are events. Tnus, S(2) = 2, rather than 4. [f
every summand in the product expansion TN (Ej+E;) is an event, ther S(N) = 2N.

Otherwise S(N) < 2N. Throughout this paper, we will denote the constituents of
the partitior: generated by the events E;, ... By using the symbols Cy, ... Ceqy-

Geometr ically, the S(N) constituents of the partition generated by N
events can be represented by points in N-space, specifically, by S(N) designated
vertices among the 2N vertices of the N-dimensional unit cube. If there are no
logical restrictions among the generating events, then S(M)=2N, and every vertex
of the N-dimensional cube represents a constituent of the partition. In this case
we say the events are campletely logrcally indepengent. But if there are any
logical restrictions among E;, ... ,Ey. then some of the vertices must be removed

from the N-dimensional cube in order to represent only the constituents of the
partition generated by the N events. In such a case we say that the operational
definitions of the events entail some degree of /agical deépendence. Figures 2.1
and 2.2 exhibit two possible configurations of lcgical dependenc. among three
events. InFigure 2.1, the two events £; and E; are completely iogically
independent, while E3 is their logical conjunction. It is defined functionally as
the product E3 = EE,. InFigure 2.2, the three events Fy, F,, and F3 are
incompatible. ‘Yet none of them is defined functionally in terms of the other
two. De Finettireferred to such e nts as /agically sem.idependent .
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Eigure 2.1. Logically Dependent Eigure 2.2. Logically Semidependent

Events, The two events E; and E; Events. The trree events Fy, F,, and
are completely logically independent,  Fj3 are incompatible. Nevertheless,
whereas event Ez is heir logical none of them 15 a logical function
conjunction: E3 = EE,. of the other two.

These concepts can be generalized to vectors. A vector of quantities,
Xy = (Xy,.... %), is a vector whose components are quantities. The reaim of
such a vector, denoted by R(X,) C RN, is the set of vectors that represent
possible outcome values obtained by performing the operations defining all the
component quantities. The component quantities of X, are said to be completely
logically independent if R(X)) equals the cartesian product of the realms of its

components. Otherwise the quantities are said to entail sume degree of logical
dependence. A vector of quantities generates a partition whose constituents are
the events of the form (X, = x,) where %, is in R(X,). Thus, the size S(N) of the

partition generated by N quantities equals the size of the reaim of their vector.
[Parentheses around a mathematical relation, such as (X, = %), should be taken

to defi- 2 an event equal to 1 if the relation holds, and equal to 0 otherwise.]

Your prevision for a vector of quantities # = (X;,...,X)T 1s the vector
of numbers P(X) = (P(X,), ...,P(X,))T you specify, with the understanding that ycu

are thereby assert/ng your indifference to engaging any tranzaction that would
yield you the net (sum of products) sT[X-P(X)l pounds sterling, where
S =(sy.....5)7 is any vector of scale corstants. Your indifference must apply to
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vectors s In every direction. It may be qualified only that the components of s
must be sufficiently small that the net yield of any relevant transaction does
not transgress the limited region over which your utilities are approximately
linear. For example, you may stipulate that your assertion of indifference
pertains only if s is scaled so that the maximum gain or 10ss you can incur from
the yield sT[X -P(X)] is no greater than 10 pounds. (For detailed discussion of
this feature, see de Finetti, 1970, 3.2.) If any component of X is an event, then
the corresponding component of your prevision vector is called your provab/inty
for that event.

In asserting your prevision P(X), you are avowing your willingness to
buy and your willingness to sell a claim to sTX pounds in exchange for payment
of sTP(X) pounds. Tnis is an operational implication of the stipulation that the
vec.or s in the yield expression sT[X -P(X)] may have any direction. Having
asserted your own F(X), then for any vector p; s P(X), you would presumably
also be willing to pay s'p; pounds for a claim to sTX pounds where every
component of s is positive. For this transaction would yield you at least as
much as paying sTP(X) pounds for a claim to sTX pounds. Similarly, for any
vector p, 2 P(X), you would presumably be willing to sell a claim to sTX pounds
in return for payment of s'p, pcund..

Let us tarry a3 moment to highlight the technical aspect of defining
prevision 3s an assertion you make regarding the value of X. The realm of X
presumably delineates all the variocus values of its component measurements
that angone can validly contemplate as possible: whereas your prevision P(X)
represents your operationally defined judgment of the value ¢f X on the basis of

such contemplation. (Someone else may assert a different value as his/her P(X).

Neither of you are estimating a "true” or “correct” value of X, but rather
asserting your own valuation o X.) This distinction between R(X) and P(X)
parallels that introduced by Frege (1879) in mathematical logic. Within the
confines of two-valued logic, he introduced notation to distinguish the content
of 3 declarative sentence, which may be true or false, from a proposition, which
is an assertion by someone that the sentence is true. The rules of two-valued
logic govern the self-consistency of several pr opositions, requiring that you do
not assert botn the truth of a sentence, A, and the trut-i of its negation, A. The
extension of these rules to the logic of uncertainty 1s motivated by the desirable
property that your assertions of prevision be coherent.

.10
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Your prevision for a vector of quantities, P(X), is said to be conerent
as long as Yyou do not assert by it your indifference to some transaction that
would surely yield you 3 loss, no matter what the outcome value of X may be
among the possibilities in R(X). Algebraically, the coherency of your specified
P(X) requires tnat there exists no vector s with sufficiently small components
for which, for some € > 0, s'[x-P(X)] <-¢ < 0 for every vector x € R(X). This
specification of this requirement leads to the algebraic characterization of
coherent prevision as a linear functional over the space of linear functions of X.
By a standard supporting-hyperplane argument, the set of all coherent vector
previsions assessable for the vector of quantities X is identical to the convex
hull of R(X) in N-dimensional space. The coherent extendibility of your asserted
linear functional, P, to larger spaces is the subject of the fundamental theorem
of prevision, to be discussed.

Your condrtiondl prevision for a quantity X conditional on E, deroted
P(X|E). is defined as the number you specify with the understanding that you are
thereby asserting your inditference to engaging any transaction that would yiela
you the net gain of s[XE - P{X | E)E] pounds sterling. Such a transaction is
called a contingent transaction for X, contingent on E. For the yield from the
transaction (gain or loss) will differ from O only if the event £ in fact equzls 1.
A conditional prevision assertion P(X |E) conheres with assertizns of P(XE) and
P(E) if and only if P(XE) = P(X|E)P(E). This definition of conditional prevision
makes no reference to any assertion of prevision you might make in the future.
Your conditional prevision represents an operationaily defined judgment you
make now about the value of X and E, based on your current state of uncertain
knowledge. (See Goldstein 1985 for discussion and developments based on this
distinction.)

We conclude these preliminaries with the observation that any vector
of events, Ey. can be written as a linear function of the vector of constituents

of the partition the events generate, Cq(yy. via the equation

En = Rusoy Csowy
Here Ry sy 'S the [NxS(N)I matrix whose columns are the vector elements of the

realm R(Ey). Since every entry of Ry ) equals either 0 or 1, each colunin
vector of Ry gy associates'a specific constituent of the partition with some
vertex of the N-dimensional unit cube. The equality of E and RC merely states

11

Page 8




the identity of each event E; with the sum of specifiC identifiable constituents
of the partition generated by E,, ... k. These constituents are identifi2d by
expanding the right side of the equation, E; = Ei[ﬂj:-," (Ej*ﬁ’j)(jzi)]. and then
recognizing the proscribed summands In the resulting expression that necessarily
equal 0 due to logical restrictions among the events generating the partition.
For example, the vector of three events whose realm 1s displayed In Figure 2.i

can he expressed as Ez = R3.4C4:
(En 1001y Cp

[E2| = Joo 1] el .
gz looo 1) |csf
Lcy/

where C ]- is the event that the vector E3 equals column ) of the matrix Rs,q4.

Notice that the columns of Rs,4 are also the vector elements of the realm R(E-).
represented by bold dots in Figure 2.1. More generaill, 3 similar equation
characterizes any vector of quantities, X, as

Xxn = R(XWCsen) :
where R(X,,) is the matrix whose columns are the elements of the realm R(X,),
and Cgy is the vector of constituent events (X, =x,). one for each possible
observation vector Xy in the realm R(X,).

Finally, notice that although the numerical values of the quantities
X1, ....Xy and of the constituents Cy, ... ,Cgqyy may well be unknown to you, you

Car Je certain that the sum of the constituents equals 1. That is, ZCsy = 1
since Cy,...,Cqyy CONstitute a partition, by construction. [We use the notation

Zv Tor the sum of the components of a vector v. We will also have recourse to
denote by 1y, the N-dimensional coiumn vector with every component equal to 1.]

12
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3. THE FUNDAMENTAL THEOREM OF PROBABILITY: INITIAL EXTENSIONS

The operational-subjective ..ieory of probability allows you to assert,
as your prevision (probabilities) for a vector of events, any vector of numbers
you please, subject only to the restriction that your assertion be coherent. The
coherency restriction will then ge/f/ne your prevision operator as a linear
functional on the space of linear functions of the event vector. Notice that your
prevision operator is not defined for all functions on the basis of some
underlying measure. Rather, your prevision for a vector of quantities becomes
defined only when you actively assert your willingness to engage the
transactions specified in the definition. Coherency requires that when you
assert this willingness, you concomitantly assert your willingness to engage in
specified transactions involving linear combinations of the quantities, whose net
yields would be identicai to the yields from transactions you have
expressly asserted to be acceptable. Now suppose you coherently specify y¢ r
probabilities for a vector of N events, Ey. De Finetti's fundamental theorem of

probability characterizes the numerical restrictions on your assessment of
prevision for any further event, Ey, , that are required by -- and insure -~ the

coherency of your overall prevision for the vector of events
Enet = (Ey,... .Ey.Eyosq)T. The first theorem we present is a reformulation of the

fundamental theorem as a linear programming problem. [t appears first to hu'e
been suggested in such a form by Bruno and Gilio (1980), while the subsequenit
extensions in this section were developed and discussed in the thesis of Rahman
(1987).

Fundamental Theorem of Frobability. Let Ey be a vector of events for
which you have specified your prevision vector, P(Ey) = py: and let Ey., be o
other event. Depending on the logical relations amorg the events E,...,.Ey.Ey.;.
they generate a partition of size S(N+1) < 2N*1. Denote by Cg(y. |y the vector

that comprises the constitutents of this partition. By construction, the vector
Ener = Buersne1)Csne 1y, O the appropriate matrix Ry, g¢y.1)- Denote the first

Nrows of Ry.ys(ne1) DY By s(ner). 3nd the (N+1)St row by Fy.y- Then, for the

coherency of an extended prevision assertion for all components of Ey. .

P(Ey.;) = (pyT.P(Ey.,))T, it is both necessary and sufficient that the numerical

value of you: (Ey.,) lie within the interval [ly.,,Uy.;], where the values of Iy.,
13
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and uy,, are determined by solving the following two linear programming

problems:
Find those S(N*1)-tuples Ggey. 1) = (41,92, ... .Qgene )T that yield the extren,

Iyey = Minimum (rN.,qS(N,,)) and uy,, = maximum (rN.,qs(N,,)).
both subjec* to the (N+1) linear equality constraints

Ru,sne 1) Qsenen) = Py @A Zqgqnepy =1,
along with the S(N+1) non-negativity restrictions that each component of Qs(N+1)

be non-negative. The feasible region for these programming problems Is empty
if and only if your original assertion of P(E,) = p is Incoherent.

Froof. An assertion P(Ey.,) = py., iS coherent if and only if the vector
Pn.; lies within the convex hull of the set R(Ey.;). Now the event vector Eyoy i3
a linear transformation of the constituent vector Cgy, ) It generates. The
transformation takes vectors in S(N+1)-dimensional space into (N+1)-dimensicnal
space by the transforming matrix Ry,y sner). Viz., Eyey = Ryeq soneCsone -
Under this transformation, the convex hull of R(Ey.,) is the image of R(Csy. .
Thus, the vector py,, iles within the convex huli of R(Ey.,) if and only if it can
be obtained by the same linear tranformation of some vector within the convex
hull of the realm R(Cgy.;y. Since the components of Cgy.;y CONStitute a
partition, the.convex hull of R(Cgy.,) 1S the simplex of vectors
Qs(ne1) = (Qy.....d5(y+1)) WhOse components are nonnegative and sum to 1. The
assertion P(Ey,,) = py., is an extension of the assertion P(E,) = py, If and only 1!
the first N components of the vector py,, are identical to the components of
Pn = By s(ne1)Qs(ner) fOr some qualifying vector ggey.py- Thus, satistaction of

the linear programming formulation is both riecessary and sufficient for an
assertion P(Ey,;) = py., to be a conerent extension of the assertion P(E,) = py,.

The same logic underlies the final statement in the thecrem, that the original
assertion P(Ey) = py is incoherent if and only if the feasible region of the

specified programming problems 1s empty. v

14
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Let us make a few simple observations before a deeper discussion.

At one extreme, if Ey,, happens to be a linear function of E,,...,.Ey, then
P(En.¢) 's determined exactly, on account of the linearity property of coherent
prevision. In this case ly.; = Uy.q = P(Ey.,). At the other extreme; if Ey,, happens
to be completely logicaily independent of E,...,Ey , that is, if S(N+1) = 2 5(N),
that is, if Ey., and Ey., are both compatible with every constit tent of the
partition generated by Ej,...,Ey , then l,,=0and uy,,= 1. Inthis case, the
boundaries on the coherent assertion of P(Ey, ), as an extension of the assertion
P(E)) = py. are not affected at all by the specific components of the vector py.

(A coherent prevision assessment for any event, of course, must lie within the
interval {0, 1].)

Between these two extremes lie all the intermediate possibilities of
logical dependence concelvable among E;,...,Ey,,. The tightness of the bound on

P(Ey.;) depends on the numerical values of P(Ey),..., and P(E,) as well as on the
logical relations among E;, ... Ey,,. For example, notice that in Figure 2.1 if

P(E,) = P(E;) = .S, then the bounds on P(E3) are 0 and .5. For any value of P(E3)
outside these bounds, the vector P(E3) = (.5, .5, P(E3)) would lie outside the
convex hull of the realm R(E3), outlined in bold. Whereas, if P(E;) = P(E,) = .7,
then the bounds on P(E3) are .4 and .7. Within the convex hull of the four
possible outcome vectors, the convex hull of R(E3), all vectors that project
orthogonally onto the point (p+,py) = [P(E,),P(E,)] lie within the bounds specified
by the two linear programming problems.

The major practical difference between de Finetti’s characterization of
coherent prevision as a linear functional and the more common measure-theoretic
axiomatization of probability can be seen by comparing this fundamental theorem
with a corresponding axiom of the usual appro..r. The measure-theoretic
corcept  supposes that a unique probabi.ity measure is defined on every
"elementary event”, that is, a set corresponding to a constituent of our partition
generated from Ey,....Ey,;. Then it is axiomatic that the probability of any uriori

of these disjoint events [note the measure-theoretic and set-theoretic languagel
equals the sum of the probabilities of the elementary events in the union.
Bayesian statistical theorists who have atterpted to use this mathematical

15
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formulation with a subjective interpretation are justly criticized by the
objecting practitioner who questions “How can | possibly assess my probability
for each of those elementary events?* For S(N+1) can be much larger than N+1,
even as large as 2Y°!. The characterization of coherent prevision as a linear
functional aliows you, as the practitioner, to assess your prevision for as many
or as few events as you feel able and interested. Notice that any vector qgy.:)

satisfying the linear programming constraints would be coherent, and would
cohere with the assertion P(Ey) = »,, if it were asserted as a prevision of the

constitutent vector Cgy.py- The usefulness of -the fundamental theorem of

probability lies in the fact that the logical relations among the events of
interest to you can be exploited in aiding your assessr :nt of P(Ey.,). without

the necessity that you identify your prevision for every constituent of the
partition generated bl Ey, ...,En.,.

3.1. Discussion: Bounds on Prevision at the Base or the Assessment Frocess

After pou have coherently asserted your prevision P(Ey) = py. the

requirement of the fundamental theorem that ly., s P(Ey.;) < uy., has two

practical implications. One is cautionary. The other is behavioural. As 3
guideline, the requirement cautions that if you now undertake to specify your
P(Ey.y). it had better lie within the interval [ly.;.u.;). Or else you will have

expressed an incoherent opinion. If you desire to be coherent, a reassessment of
P(E,). ... .P(Ey) would be in order if you are satisfied with your assertion of
P(Ey.¢) Outside cf the interval [ly.,.Up.q). Indeed, this is the Ianguage in which

the fundamental theorem has been stated. But in addition, the theorem already
has a benavioural consequence for you, even if you never assert a prevision value
for Ey.,. The theorem implies that the coherency of your prevision operator

along with tne logical relation of E,, to Ey and your already specified assertion
of P(Ey). together, anount to your avowed willingness to pay any amount up to
(sly.y) for a claim to the unknown value (sEy,,). [As noted in the preliminaries,

s is qualified to be a small or moderate amount, say 10 pounds sterling.] For a
combiration of transactions involving only components of Ey can be arrariged

that will surely not return you more than (sky.,) and for which you have
already asserted your willingness to pay (sly,,). Similarly, you are avowedly
willing to offer for sale a claim to (sEy.,) in return for at least (suy.,).

-
o8
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This statement of behavioural implications for de Finetti's Fundamental
Theorem of Probability is related operationally to Leamer’s (1986) saggestion
that a "bid-ask spread” be considered the basic meaningful unit for expressing
one’s uncertainty about a quantity within the operational-subjective framework.
Although we do not subscribe to the entire argument presented in Leamer’s
paper, his operational meaning for asserting a probability interval is compelling.
A much discussed criticism of the operational-subjective theory of probability
hinges on the requirement that you specify a single price at which you are both
willing to "buy” and willing to "sell” a quantity, in order that the theory have any
content. The behavicural interpretation of the fundamental theorem softens this
requirement. It is operationally meaningful to make a part/a/ assertion of your
prevision for a quantity X -- that your P(X) lies within the interval (p.pyl-

Formally, you thereby avow your willingness to engage any transaction that
would yield you the net gain of s|[X -p] + sylpy - X]. s0 long as s| and s, are

non-negative scalars small enough that your net gain or loss cannot be too large.
Requiring coherency of a partial assertion of prevision, that you neither assert a
willingness to accept a sure loss, nor a willingness to forego a sure gain,
implies minimally that a coherent prevision interval [p;,p,] must satisfy the

inequalities: min R(X) s p| s py s max R(X).

In higher dimensions, this characterization of a partial assertion as the
assertion of a prevision interval expands not merely to a prevision hyperinterval,
but to a prevision polytope, perhaps highly irreguiar in shape. Tris follows from
the fact that when you assert your willingness to engage in several individual
transactions, coherence requires your willingness also to engage them in linear
combinations (subject to the qualification that the scale of the net gain or 10ss
not be too large). Moreover, a partial assertion regarding an individual quantity
may be redundant In the context of other partial assertions you make. These
1deas are presented most simply by an example.

Suppose that E, and E, are incompatible events, and that event E; 15
defined as their sum: E3 = E, + E,. Thus, the convex hull of R(E;) is the plane
triangle connecting the points (0,0,0), (1,0.1), and (0,1,1). This hull is
depicted in Figure 3.1, projected onto the 2-dimensional space containing R(E).
Now, suppose further that you make the three partial assertions of prevision,
P(E)) € [.25,.5], P(E;) € [.2..3]. and P(E3) € [.5..9]. The dark polygon within the
convex hull contains 2l the vectors 1n 2-dimensional space that satisfy the
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restrictions specified by your several partial assertions. For any price vector
(p1.p,) outside this polygon, you have effectively asserted your willingness to
engage some transactions that involve buying or selling E, for py and/ar buying
or selling E; for p,. But you have not yet made any assertion of your position on
exchanges involving prices represented by any vector within the polyqgon.
EZ
1.0
9

25 ¢<P(EPES

\a -
S<¢P(Ex)¢9
sK \
3 \\ 3 2¢P(Ex)¢3

1 _‘ AN

25 5 9 10 !
Eigure 3.1. ' isi The events E; and E, are
incompatible, and E3 = E; + E;. The convex hull of R(E;3), projected onto the
2-dimensional space containing R(E,), is the heavily outlined half unit-square.
The dark polygon within this convex hull is the partially asserted prevision
polytope specified by the three partial assertions of prevision, P(E,) € [.25,.5],
P(E;) € [.2,.3], and P(E3) € 1.5, .9].

There are two special features to note in this examrple. First is that
the asserted upper bound, P(E3) s .9, is redundant in light of the other two
assertions of P(E)) s.S and P(E;) s.3. For the willingness the latter signify,
to engage in any transaction yielding s,,(.5-E,) + s,,(.3-E,) as long as s, and
Spy are non-negative, implies a willingness to engage in any transaction yielding
s3y (.8 -E4~E3) = s3,(.8-E3), signified by the assertic, P(E5) s .8. The second

feature to note is that the assertion P(E3) = .5 signifies a willingness to engage
a transaction yielding s3(E3-.5) = s3/(E; +E;-.5) = s53/(E;=.27) + s3/(E;-.23),
for example, even though .27 exceeds the iower partial assertion value of P(E,),
and .25 exceeds the lower partial assertion value of P(E;). Thus, the vector
(.27..23) lies outside the polygon of partially asserted prevision.
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The fundamental theorem of probability supports and even motivates
the point of view that your intervals of partial assertion of prevision for
individual quantities has a definite operaticnal meaning in the representatior: of
uncertain knowledge. The coherency requirement that you neither willingly
accept sure losses nor willingly forego sure gains characterizes a part/aliy
asserted prevision pofytaope, the set of vectors that satisfy the inequalities ot
g// your partial assertions, as a convex polytope Iying within the convex hull of
the realm of the quantity vector. You can be said to have asserted your
prevision for a quantity, as defined in the preliminaries of this paper, only 1n
the extreme case that your asserted prevision interval for that quantity consists
of & single number. The fundamental thecrem actually requires proponents of
the operational-subjective formulation of uncertain knowledge to admit this
viewpoint. For whatever precise prevision assertions you make for whatever
quantities, the theorem snows us how to 1dentify another quantity for wh'ch
your avowed assertions are equivalent to a partial assertion.

The terminology part/al assertion of prevision for the statement
P(X) € [p.py) is expressly meant to connote that, conceivably, you can complete

an assertion of your prevision for this quantity by a process of further
Introspection and sharper decision. Would you rather own a claim to ¥ pounds or
aclaim to (p|+py)/2 pounds? Once you decide, you will have strengthened your
partial assertion of prevision eitner to P(X) € [(p| +py)/2, p,] or to

P(X) € [p1.(p)*+py)/2]. depending on the decision. However, there are many

useful ways you might decide to spend your time. So there can be no requirement
that you assert a resolution of any particular value question such as this one.
Several contemporary proponents of “interval probabilities” argue that
probabilities are best corsidered to be Jireaucible intersals, Subjectivist
proponents of this view say that "when | assert P(E) € [py.p,). | mean that I

'would pay up to py for a claim toE, and | would sell a claim to E for py Or more.
But at prices between pj and py. | will nerther buy nor sell a claim to €. we do

not subscribe to this viewpaint. Without further discussion here, let us merely
state that such a position reglects the hinearity of utility presumed n the
qualification that the scale be small for the net yields from any relevant
transactions.
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3.2, &xtensions of the Theorem or Frobavility

The fundamental theorem of probability can be extended to describe the
implications of coherency for your partial assertion of probability intervals. The
theorem, in the form stated above, makes only limited use of the rich
possibilities of the linear programming structure. The constraint £ qgy. ;)= 1.

along with the S(N+1) restrictions that each component of qgy. |y be
non-negative, together specify the feasible region of vectors Qs(x.1y 35 the

corivex hull of the realm R(Cgy. 1)) The matrix Ry, g(n.y) transforms these

vectors nto (N+1)-dimensional space. Thus, In effect, these [S(N+1)+1]
restrictions on qg(y.y define a convex polytope in (N+1)-dimensional space.

Each of the further N exact linear constraints specified by the equation P(E,) =
Pn = By sine1)9s(n- 1) reduces by 1 the dimension of the transformed feastble
region. When all constraints are met, the coherent assertions P(E,,,) that are
extensions of the assertion P(Ey) = py, are restricted to lie along a bounded

one-dimensional line segment. its endpoints are defined by the extrema of the
aesignated linear programming problems.

We say this is merely “limited use” of the linear programming setup,
since you need not go so far as to assert fully your prevision vector P(E) in

order to compute numerical bounds for P(Ey.,) with a linear programming

algorithm. A computable solution of bounds for coherent assertions regarding
En.1 Can still be achieved on the basis of partial assertions, ly < P(Ey) < uy.

Although these assertions may not reduce the g/mension of your prevision
polytope for Ey,,. they coutd reduce its volume considerably. This is the tack

we follow in stating our first extension of the fundamental theorem. (Its proof
is contained informally in the preceding discussion.)

The Funoamental Thearem of Prdability - Extension /. Let Ey be any
vector of events for which you make the partial assertions Iy < P(Ey) s uy. And
let Ey., De any otner event. The logical relations among components of E,,,
specity that En.y = Ryeyc(ne1y)Csenery- (AGaIN, let Ry g(v. ) denote the matrisx
composed of the first N rows of Ry, 5(v.1y. and let r, denote the 11 row.) The
conerercy of your explicit assertions regarding the vector Ey., entails that you
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also avow the partial assertion ly,; < P(Ey,|) s Uy, ., where |, and uy,, are

determined by the solutions to the following two linear programming problems:
Find those S(N+ 1)-tuples Gg(y. )y = (y,... .dg(n.1)T that yield the extrema

ey = MINIMUM (Fyy Ggeuer)) AN Uy,q = maximum (Fy., Gsoee 1)) -
both subject to the linear constraints that
Rusown Gsonen 2 Iy
Ry,s(ne 1) Gs(nery < Uy .+ and
Zq5(neny = 1.
along with tile non-negativity restrictions on the components of Q5(N+ 1)

Moreover, the coherency of your several assertions about Ey.y defines your
prevision polytope for E,,, as the feasible region in these linear programming
problems, transformed into (N+1)-dimensional space by the matrix RNet, s 1) -
Thus, for each component event E; of Ey,;, you avow, In effect, the partial
assertion 1j* < P(Ej) s uj*, where 1;* and u;* are the extreme values attainable
by the function r, qsey.;y Within the feasible region. A

This form of the theorem exhibits the interconnections among all your
partial assertions of prevision that are required by coherency. Your prevision
for each of the N+ events is constrained in the same fashion, by a bounding
interval. The vector of your previsions for 3// of the N+1 events must lie within
3 convex polytope, the transformed feasible region of the programming problems.
Any further decisive introspection motivating you to narrow one of your asserted
Intervals, [1;*, uj*]. could have an effect on the implied bounds for any or all

other quantities, narrowing the associated intervals. For your explicit narrowing
of the interval [1;*,u)*] (for example, asserting P(E,) precisely) would amount

to a more restrictive specification of the feasible region of vectors G5(n- 1) that

are al'owed by the programming problems.
Note that the implied intervals [1j*, u,*] are "marginal” ratner than

"joint” intervals, In the sense that, because they are merely one-dimensional
projections of the partial prevision polytope, their cartesian-product
hyperinterval need not consist of points that would be coherent if asserted as
prevision vectors. They are necessary but not jointly sufficient as pounds for
coherent prevision vectors. The smatler partial prevision polytope s the set of
all the coherent candidate prevision vectors.
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A second useful extension Of the fundamental theorem 1s readily
apparent. In the linear programming context, @ mere assertion of orderings
among your previsions for several quantities or for linear combinations of them
IS sufficient to generate computable bounds that express your uncertain
knowledge ' egarding any quantity. For example, you might assert that your
P(Ey) 2 P(E;). meaning that you avow a willingness to exchange a claim to sE,
pounds In return for a claim to sE; pounds (presuming ¢ 1s not large). With
similar operational meaning, you might assert that your P(E3)+ P(E4) = P(Es), or
even that your P(Eg)+ 2P(E7) > P(Eg). Moreover, any assertion of conditional
prevision can be expressed as a linear constraint as well. A coherent assertion
that your P(E,|E,) = py.,, for example, is equivalent to the assertion that
P(E4L>) = py.2P(E2), whicn 1s to say, P(E4E,) - py.oP(E;) = 0. This is a linear
restriction on your prevision for the events E, and E3 = E4E,. Similarly, the
partial assertion P(E,|E,) € [a,b] is representable by linear restrictions:
aP(Ez) - P(EyE2) s 0, and bP(E,) - P(E,E,) 2 0. Each such statement is readily
transiated into linear constraints allowable in the linear programming
framework: @Ry g.1)qs(n.1y < D. fOr @ suitably defined row vector a and an

appropriate number b. (Without loss of generality, we will henceforth express
all inequality assertions in such a “less than or equal to" form.) Let us merely
state this second extension of the fundamental theorern in a summary fashion.

Fungamental Thearem of Frobability - Extension 2. The fundamental
theorem of probabihity extends further to allow meaningful partial assertions of
prevision in the form Ay \ P(Ey) s D¢ 35 Input to the linear programming

problems, and to Iraply computable bounds on coherent prevision for any linear
combination of constituents, P(r Csy.y). A

This extension of the fundamenta!l theorem unifies the numerical
representation of subjective probability with ideas of merely ordinal prebability,
as advarced in several works of Shackle (1949, 1955). According to de Finetti
(1965), 1deas behind such an extension were already underlying works In
educational testing by Coombs, Milholiand, and womer (1956), Willey (1960,
Chernoff (196°, 1962), and Dell’Era (1963).

we can summarize the position to which the fundamental theorem of
probability has led us. The requirement of coherency provides that whatever
Know ledge uou assert about a vector of events, no matter how meagre cr how
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detailed the knowledge may be, delineates a convex poiytope that represents
your prevision to the extent to which you have specified it. We need not
presume that the volume of the polytope is reduced to zero by any prec/se
specification of your prevision. Yet there is positive operational meaning to the
know ledge you do specify.

4. THE FUNDAMENTAL THEOREM CF PREVISION

Since events are merely quantities whose realm is {0,1}, it should not
be surpris:ng that the funaamental theorem of probability, and each of the
extensions we have presented above, depicts a special case of a theorem
applicable to prevision for general quantities. What may be surprising is the
breadth of important results in statistical theory that are particular instances
of the general result. We will state and prove the fundamental theorem of
prevision in two parts. The first part is a comprehensive generalization of
results we have already discussed. The second part reveals the bounds implied
for coherent conditional prevision. After an intermediate discussion, we will
dwell on two important corollaries.

In what follows, we presume X, = (X;,....X\)7 to be a quantity vector,
with a finite discrete realm R(Xy) having S(N) members. We noted at the end of
our preliminaries that X, can be represented in terms of the linear equation

Xn = Ry, sii Cseny :
where Ry sy = R(Xy) is the (Nx S(N)) matr ix whose columns are the vector
elements of the realm R(X,), and Cqy, is the (S(N)x 1) vector of constituent
events of the form (X =xy), one for each element vector %, in the realm R(X,).
Individual rows of Ry 5(yy are denoted ry,...,ry. Using the generalization of

prevision to a prevision interval (operationally defined by the assertion of a
bid-ask spread) and the generalization to the assertion of any preference
representable by aT P(X,) < b, we can represent any knowl¢ ige you would like to

assert about components of Xy viz linear relations of the form Ay \ P(Xy) < by .

Ba' ~d upon the characterization of cohierent assertions as the foregoing of any
Sure 10sses and the accepting of all sure gains, we can now state simply and
generally:
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The Funaamental Theorem of Frevision. Part /. Let X, be any vector

of quantities for which you have partiaily asserted your prevision via the
specifications Ay \ P(Xy) s by . (The number K may be less than, equal to, or

greater than N.) Then coherency implies that for any component, X|. you assert,
In effect, P(X,) € [I;,ujl, where the numerical values of 1j and uj are calculated

as the extreme values of the objective functions in the linear programming
problems:
Find the two S(N)-tuples qgyy = (qy.....Gg(yy)" that characterize

) = minimum Qs and  uj = maximum r; qg
both subject to the linear constraints
Acn By spn Qs s B, and
Eqsney =1
along with the non-riegativity restrictions on the components of Qs (-

The commen feasible region for these programming problems, translated into
N-dimensional space via the matrix Ry gy, CONStitutes your coherent prevision

polytope for X,;. This feasible region is non-empty if and only if your original
assertion Ay \P(Xy) < by is coherent.

Froof of Part / . This part of the theorem follows immediately from
the second extension of the fundamental theorem of probability discussed in the
previous section. For any general quantity can be represented as a linear
combination of events: X = T x,(X=x;), where the summation extends over all
the possible observations x, in the realm R(X). A linear programming algor ithm

will necessarily yield finite extreme value solutions to these problems as long
as the feasible region 1s not empty, since the feasible region is bounded. V¥

It is worth mentioning explicitly the reminder that the assertion of
each individual P(X,) within its associated interval {1,,u,] is necessary but not

sufficient for the coi.:rency of a prevision vector P(X,). The necessary and
sufficient condition for the coherence of the prevision vector P(X,) is that it lie

within the feasible region for these programming problems, transiated Into
N-dimensional space via the matrix Ry, svy-

24

Page 2!




Remember that any assertion of conditional prevision, such as the
partial assertion P(X l E) € [a,b], can be incorporated into the form of input to the
programming problems specified in this theorem. Due to the coherency require-
ment that P(XE) = P(X | E)P(E), it is equivalent to the two assertions,
aP(E) - P(XE) < 0 and bP(E) - P(XE) > 0. However, bounds on coherent conditional
previsions cannot be computed as output from the theorem as stated, since
cohering P(X |E) 1s not @ /inear function of P(XE) and P(E). Indeed, we know, at
least when you assert P(E) > 0, that P(X | E) must equal the quotient P(XE)/P(E).
We can use this fact to derive a sufficient condition for the coherence of a
conditional prevision as an extension of assertions Ay nP(X)) < Dy .

For clarity in stating Part il of the fundamental theorem of prevision,
we will refer to a further assertion of conditional prevision beyond the
assertions A P(Xy) s b, as a statement involving P(Xy, | X.,), where Xy, is
3 quantity and Xy,, IS an event, denoted distinctly from the components of Xy
You should be aware, however, that there is nothing special about these
quantities. They could well both be components of Xy, about which you have
explicitly made partial assertions of your prevision.

The Fundamental Theorem of Prevision, Part //. Let X,, be any vector
of quantities for which you have partially asserted your prevision via the
specification, Ay \P(Xy) < by, as inPart I. Now let X,,, and XN+ De any other
quantity and any event, respectively, and let Xn.3 De defined as iheir product,
XNo3 = XNotXnez- SUPPOSING R(Xy,3) has S(N+3) members, X,z is representable
via the equation Xy.3 = Ry.3 sy+3)Cs(nez) LEL Ry, s(ne3) denote the matrix
composed of the first N rows of Ry.s g.3). and denote the final three rows of
Ryes s(ne3) DY Fiyays Fep. 30D Py, respectively. Any further assertion of
conditional prevision P(X,, | Xy.,) coheres with A nP(X\) s by if it lies within
the interval [y, 1|n.2 . Uyey[n»2]. Where the numerical values Inei|No2 30D Upoj|nez
are calculated as extreme values of the objective functions in the nonlinear
programmir.g problems:

Find those S(N+3)-tuples, Qg .3) = (qy. ....95ne3))T. that characterize
INet|Nez = MINIMUM [Fo3Q5(ve3) /PN 5oz . @nd
MAXIMUM (M3 Q5 (vez) /Fez Os (ne3))
both subject to the linear constraints

AN BN spen Qswsy s Dy, and

Unet[N+2
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EQs(nez) = |
along with the non-negativity restrictions on the components of Qs (\+3) -

Supposing that the feasible region 1s not empty, nonlinear-programming
algorithms will yield finite extreme value solutions to these problems if and

only if the coherence of P(Xy.,) with Ay \P(Xy) < b, requires that P(X,,,) > 0.

Froof of Fart //. This result hinges on the coherency requirement that
for any quantity X and event E, the a<sertion P(X | E) must satisfy the restriction
that P(XE) = P(X|E)P(E). Thus, the coherency of an assertion P(Xy,, | Xy.p) With

the assertions Ay \ P(X,) < by requires that there be a vector q satisfying the
linear restrictions specified in the theorem, for which P(X,,) = ry., q and
P(Xy.3) = Fy.39, and for which P(Xy,; | Xn.2) Fyep @ = Fr.3q. Thus, the relevance
of the non-linear objective function ry,3;q/ry.,q to the coherence of the further
assertion P(Xy, | Xy.p) is established as long as ry,,q is bounded away from 0.

However, no bound can be computed by these means for the quotient
Fne3 Qs (ve3)/ Five2 G5 (ne3) @S 100G s there is a vector q satisfying the restrictions,

for which ry,,q = 0. This condition would allow an assertion of P(Xy,,) = 5 to
cohere with Ay, P(X\) < by . On the other hand, if all feasible vectors q entail
that ry., q >0, the quotient Cy,zq/Cy.,q is necessarily bounded, for the feasible

set of vectors q is closed and bounded. \Y,
Figure 4.1 displays the logic of the argument. The numerical vaiue of
P(Xne1 | Xnop) cOnerent with the assertions of P(Xnag) and P(Xy,,Xy.o) equals the

slope of the vector (P(X.,),P(Xy.3)) whenever a unique slope is defined. Suppose
that the convex hull of the realm R(Xy.,,.Xy.3) IS the dark bordered triangle with
vertices (0,0).(1,1), and (1,5). If the coherency of [P(Xy,,),P(Xy.3)] with the
assertion Ay \P(X)) s by requires that the vector be bound within the inscribed

quadrilateral, for example, then it would also restrict a cohering assertion of
conditional prevision P(Xy,, [ Xy.,) to lie betwen the mirimum and maximum

slopes of lines through the origin that intersect the quadrilateral. If the
assertion (P(Xy,,), P(Xy.3)) = (0,0) would cohere with A NP(Xy) < by, then

every line through the origin would Intersect the region of cohering assertions
(P(Xnv2) . P(X.3)), and thus there would be no bound on a cohering assertion of

P(Xxe1 | Xne2) Without strengthening the definition of coherency. Further
discussion of this eventuality is beyond the scope of this paper.
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XN+ 1 ><N+2

Uparnez = MBX PIXy  TX0]
Inet[nez = MIN PIX e ! % o]
’ ><N+2
Eigure 4.1. her f conditi revision. Bold dots represent vectors In

R(Xne2 . Xne3) s Where Xy,z = Xy, Xy.p. The bold triangle is the boundary of their
convex hull. The inscribed quadrilateral represents assertions of P(Xy.,.Xy.3)
tresumed to cohere with the assertions Ay \P(Xy) < b . Then the slopes denoted
ye1|N+2 30D Upey |no2 @€ the minimum and maximum values of P(Xy,; | Xy.p) that
would cohere with this pz, cial assertion of P(X,,).

It is worth noting that Suppes (1981, p. 24) decried the non-existence
of aresult suchas our FTP Part Il as a "serious difficulty” for a numerical
representation of uncertain ' wvleuge.

A simple algorithm. The nontinear programming problem of FTP Part [l
can be solved computationally by a one-dimensional monotonic search among
solutions to related tinear programming problems, as follows. To maximize the
ratio y/x over points (x,y) of a closed polygon in the open right-half plane,
define the linear function z5(x\y) = y - Ax, parameterized by A . The equation

z;\(x.g) = ¢ represents a straight line of slope A and the line passes through
the origin (0,0) only if ¢ = 0. For given A, we maximize the function zy(x.y)
over atlowable (x,y), and write max z5(x.y) = z5(x), Yp) = ¢y, . (The line
Z5(x.y) = ¢y now touches the allowable polygon only on its boundary, Including
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the point (xy, Yy ). ) If a search 1s conducted and a value A 1s found for which
C) =0, then

Un/ %\ = A

This slope 1s maximal since the line passes through the origin and touches the
polygun only on its boundary. (For the minimization problem, use the same
algorithm, with maximization replaced by minimization, throughout.)

Let us conclude this section by noticing that the strongest possible

forms of two «mportant inequalities are corollary to the Fundamental Thaorem of
Prevision.

Corollary 1. Completion or the Blenayme-Chebyshev Inequality. Let X
be any quantity with finite discrete realm R(X) = {x;, X, ....xg}. Correspondingly,
X2 is 3 quantity with realm R(X?) = {y|y=x2, and x€R(X)} = {x |2, %,2,... xs2).
Each event of the form (X=x;j is equivalent to the associated event (X2=x;2);
and all events of the frrm (X=x;), where x; € R(X), together constitute a
partition. Denoting the vector of these constituents by Cq = [(X=x,),... (X =x)I,
wecanwrite Xy - (X1 X X3y ¢ = R,4C4

Lx2) Ux2 %2 - XS2J
Suppose you assert precise numerical values for P(X) and P(X2). Your variance
for X is defined as V(X) = P[X -P(X)]2 = P(x2)-[P(X)]2, the latter equality being

an implication of the coherency of your prevision. Now for any € > 0, define the
event E¢ as the event that X differs from your P(X) by at least ¢,

Ee = (|X-P(X)| 2 €). Finally, let re denote that row ve.tor with components 0
or I for which E¢ = reCs. Then for any €>0, coherency requires that your P(E,)

lie within the interval bounded by the solutions to the following two linear
programming problems:

Find the vectors qg that minimize end maximize rqq
subject to the restrictions that

rPX)y = X1 X3 " Xg 1 Qg
Lp(x2)J L2 x,2 - xg2J
that £qq = I, and that each component of the vector g5 be non-negative. A
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The familiar Bienaymé-Chebyshev inequality states the weaker
conclusion that under the conditions specified, P(E.) s V(X)/e2. The major use

of that inequality has been In proving various forms of the weak law of large
numbers. For In practice, the traditional statement of the upper bound is
notoriously large, often too large to be useful. The inequality stated above as
corollary to the fundamental theorem of prevision actually strengthens the
inequality as proved by Chebyshev (1867) to the most extreme statement that
can be made in any particular application. A computational example showing
SUCh an improvement appears In Section S. Moreover, our coroilary completes
the celebrated inequality by specifying a lower bound as well as an upper bound
on your prevision for the event (| X -P(X)| 2 €) In any given instance.

As mentioned, the Bienaymé-Chebyshev inequality has found its widest
use in theoretical studies of the weak law of large numbers. The weak law
concerns bounds on your probability that the average of several quantities
deviates from your prevision for the average by more than any speci;ied amount:
P(| X\ -P(Xy)| 2 €). Obviously, the Bienaymé-Chebyshev inequality 1 relevant If
you assert your P(Xy) and PI(X,)2] . The strong law of large numbers concerns

bounds on the less restrictive event that at least one member of a sequence of
averages so deviates: P(Maxg ¢k <k | XMek -~ P(Xy+i) |2 €) for specified values of
Mand K. The fundamental theorem of prevision provides as corollary a
necessary and suificient bound for coherent previsions of such extreme events.
We state this corollary in the context of any firite sequence of discrete
Juantities that you regard as exchangeable, the paradigmatic context for
statistical inference. Our coroliary differs from the usual Kolmogorov
inequality, first, in assuming exchangeability instead of independence and,
secondly, by involving successive averages directly, rather than sums of
quantities.

Let us denote by X,, the vector of quantities (X;,...,.X\)'. having 2
common reaim R(X,) = R(X) = {x),....xs}. (SoS denotes wne size of this common
realm of the components.) Similarly, X2 denotes the corresponding vector of
the squares of these quantities, and (XX j )y denotes the vector of the N(N-1)/2
product quantities ‘<,><J. where | <1 <) s N. Finally, we denote 0y Cqyy the
vector of constituents of the partition composed of the events of the form
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(Xy = %), one for each element x,, in the realm R(X,). Using this notation, we
write

r X1 ¢ BXY

| X% | = | RX%Y | Cgy

L(XiX])NJ LR((XiX])N)J
Each submatrix R(") is composed of columns that are the appropriate vector
members of the realm of the quantity vector shown within the parentheses.
Notice that S(N) may be any positive integer between S and SN, dependir: on the
logical relations embeddec in the definitions of the components of X,

Corollary 2. Bounds on Prababrlities of Extreme Sequences. Let
X1,....%y De 3 sequence of quantities which you regard as exchangeable. Suppose

you assert three precise numbers for your P(X;) = P(X,), for all i (1 <i <N), your
PuX12) = P(X;2) (1 s15N), and your P(X,X,) = P(Xin) (1si<j<N). Fo: each
positive integer M and each non-negat:ve integer K, and for any € >0, define the
event Ey g ¢ = (Maxg <k <k | XMok = Ppek)| 2 €). where X; denotes the
arithmetic average of the quantities X1.....X7. Your presumed assertion of
exchangeability requires that your P(Xpai) = P(X). Finally, let M K e be the
indicator row vector for which ry g ¢Cqqyy = Em k¢ Then coherency requires
that your P(Eym i ¢) lie within the interval bourded by the extreme values
Of M K¢ Gsny» SUDJect to the appropriate linear restrictions generated from
your assertions,

P(Xy) = P(X)1y = R(XWq5n)

P(X2) = P(X,)1y = RX2)qs( . and

P[(xiXi)N] = P(XIXZ)'N(N-I)IZ = R((Xixj)N) ) -

along with Zqg¢y) =1 and ail components of qgq, Non-negative. Moreover, your
regarding the quantities X; as exchangeable places additional linear requirements
on the vector qgqy). Any components of gy Must be equal if the corresponding
columns of the realm matrix R(X,) are permutations of one another. These
exchangeability restrictions can be expressed In the form Mqgg, = 0, where eacfi

row of the matrix M contains one 1, one -1, and 0 in the remaining S(N)-2
fositions. A
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Although only corollary to our fundamental theorem of prevision, this
IS 3 very general and strong statement of its own. It specifies the strictest
bounds on your prevision (probability) for events of the form EM,K,e that are

Implied by your avowed assessment of N quantities as exchangeable and your
prevision assertions as stated in the theorem. (Kolmogorov's inequality and the
usual statement of the strong law of large numbers presuppose your stronger
assertion of independence regarding X;,...,X. Such an assertion would be

representable by a further specification of polynomial restrictions on the
components of gs(y that we will not describe here in detail.) Within the

minimalist conception of mathematics subscribed to by de Finetti, the laws of
large numbers are well specified properties of prevision for events of the form
EM,K,e- where M and K have specific finite values. Detailed discussion appears

In several sections of de Finetti (1970: 1,6.8: 11, 7.5). Our Corollary 2 to the
fundamental theorem of prevision states preciseiy the sharpest bounds on a
prevision P(Em  ¢) that are necessary and sufficient for its coherence with the

asserted prevision, mentioned. Thus, the corollary identifies the asserted
status of any sequence of quantities vis-a-vis the law of large numbers
condition, P(Maxg <y <k | XMk = P(XMe) |2 €) < § for specified values of M and K,

that is required by its coherency with the assertion of exchangeability regarding
component quantities. More standard specifications of the status of exchangeable
sequences in terms of limit theorems are compiled in the monograph of Taylor,
Doffer, and Patterson (1985). It is somewhat ironic that such a simple
Characterization of coherent probabilities relevant to the laws of large numbers
I achieved within the operational-subjective formulation of probability via the
fundamental theorem of prevision. For the laws of large numbers, so central to
objectivist theories of probability such as the frequency theory and the
propensity theory, are only a curiosity in the subjectivist theory, which centers
upon practical questions of your knowledge about particular finite sequences.

In the next section, we present small computational examples and
sugqgest realistic applications of our arguments.

9. COMPUT TIONS AND AFPLICATIONS
To begin, we 1llustrate our 1™provement on the Bienaymé-Chebyshev
Inequality, which pertains to a single quantity. We shall then extend the context

to several quantities regarded as exchangeable, In order to 1llustrate the
computable baunds on coherent probabilities of extreme sequences.
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Example /. Suppose that X is a quantity with realm R(X) = {1,2,2.4,5}.
Thus, wecanwrite Xy = 123 4 5y ¢; = Ryg Cs

Lx2) L1 4916 25/

where Cg is the column vector of events [(X=1),(X=2),(X=3),(X=4),(X=5)]T.
The convex hull of the realm R{(X,X2)T] is the dark bordered polygonal region
depicted in Figure 5.1. To begin this example, suppose you assert the previsions
P(X) = 2.2 and P(X2) = 7, or equivalently, your V(X) = P(X2) - [P(X)]2 = 2.16. The
point [P(X),P(X2)] = 2.2 7.0] should be identifiable in the figure. The figure
also shows that the assertion of P(X2) within the interval [5.0,8.2] is necessary
and sufficient for its coherence with the assertion P(X) = 2.2. In the course of
this extended example, we will also consider alternative assertions, P(X2) = 6.0
and 9(X2) = 7.6.

x2

25 1

16 |

21 82

70 —Z

4 50

“ x
0 1 222 3 4 S

Eigure 5.1. Completion of Bienaymé-Chohyshev inequality. The convex hull of
R(X,X2) is divided into two regions by a diagonal line. The lower part, Including
the points connected by the dividing line, is the convex hull of the subset of
possible observations for which |X-2.2|< €, provided € satisfies the inequality
18<€x28.

Let us first study an event that is easy to describe geometrically: the
event that X differs from 2.2, your P(X), by at least 2.8 units. Using the
notation of Corollary I, we write E; 5= (|X-2.2|22.8)=(00001)Cy. What
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does the coherency of your prevision require of your P(E; g)? Since £,5 15 a
function of X, you can imagine a third axis for this quant:ty, rising
perpendicularly up out of the plane of Figure 5.1. Visualizing the 3-dimensional
figure, we s2e the value E; g = 1 if X has the value 5. But for the other four
possible values of X, E» g = 0. Now the convex hull depicted in the original plane
figure can be viewed as the projection of the convex hull of R(X, X2 E, g) onto
the space of (X,%2). The lower half polygon whose vertices are the four points
(1,1,0), (2,4,0). (3,9,0), and (4,16,0) constitutes the bottom face of the
3-dimensional hull. There are four other faces on this hull. Each is defined by a
triangle connecting one edge of this bottom face with the point (5,25, 1).

Since any coherent prevision point for the vector of quantities
(X,X2,E».g) must lie within the hull 1n three dimensions, 1t should be evident
why the linear programmirg solution that minimizes P(E, ) subject to the
relevant restrictions yields a lower bound of 0 (corresponding to the primal
solution vector qs = (.6,0,0,.4,0)). For the associated prevision vector |
P(X.X2,E5.6) = (2,7.0,0) lies on the bottom face of the hull. The maximization -
problem subject to the same constraints yields an upper bound of .2 i
(corresponding to the primal solution vector Qs = (.4,.4,0,0,.2)). The associated
prevision vector P(X,X2,E, ¢) = (2,7.0,.2) is the highest point in the hull that
projects onto (2.2,7.0) [in the space of (X,%2)]. This upper bound on \
P(|X-2.2| 22.8) 15 sharper than the Bienaymé-Chebyshev bound in this case:
W(X)/e? = 2.16/(2.8)2 = .276. Notice that Figure 5.1 would be unchanged for
illustrating the logic of coherent prevision for any other event Ec for which ¢

lies within the haif-open interval (1.8,2.8]. Events such as
Eyg1 = (|X-P(X)| 21.81) and E, 4= (|X-P(X)| 22.8) are identically
equivalent to the everit (X=5).

Figure 5.1 can also be used to aid ones intuition in several more of the
computational results presented below. Considering a coherent prevision for the
event £, = (] X-2.2]21.2), restricted only by the assertions P(X) = 2.2 and
P(X2) = 7, one recognizes that the triangle connecting the points (1,1,1), (4,16, 1),
and (5,25,1) constitutes the upper face of the convex hull of R(X, %2,E,5), while
the line conrecting (2,4,0) with (3,9,0) constitutes a lower edge. It should
then be evident that the upper bound for conc. ant P(E, ,) 1s 1, while the lower
bound wili exceed 0. The precise lower bound 1s .6, as listed witn the upper and
lower bounds for various values of € and V(X) in Table 5.1, below. As shown for
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€ = 1.2, 1f you assert P(X) = 2.2 and P(X?) = 6, coherency of prevision will bound
your assertion of P(E, ;) within an interval [1,u] that les strictly within (0, 1).
The relevant upper bound computed from the inequality of Bienaymé-Chebyshev
appe  following our computed interval in each case.

Reading down the columns of Table S.1, notice that both the upper
bound and the lower bound decrease (weaxly) as € increases. But reading across
3 row, say when € = 1.8, notice that there i1s not a3 monotonic pattern in the
upper bound on P(E, g) with increasing values of P(X?). This latter resuit may
appear counter-intuitive to readers unduly influenced by their experience with
the Bienaymé-Chebyshev inequality. If one makes the appropriate adjustments in
visualizing Figure 5.1 to illustrate E; g, one will see the interesting reason why
the upper bound for coheren: P(E, g) 1s smaller when P(X2) = 7.6 than it is when
P(X%) = 7.0.

Table 5.1 Bounds™ on prevision for Chebyshev's event, P(E,),

necessary and sufficient for its coherence with various
specified values of P(X) and P(X2), followed by the
Bienaymé-Chebyshev upper bound, headed Ug-¢ -

P(X,X2) (2.2,6.0) (2.2,7.0) (2.2,7.6)

€  conherent bounds ug..  coherent bounds ug..  coherent bounds ug.

08 [.267,1.0 ] 1.813 [6 .10 3375 [8 ,10] 4312
2 [.267, 5 1 .806 [ .6 ,1.0] 15 (8 ,1.0] 1917
1.6 [ .025, .233] .358 [ .15, .4] 657 [.225, .35] 892
28 (0.0 , 1171 .148 (0.0 , .2 276 1S, 251 352

*The bounds presented are accurate to the nearest one-thousandth.

£xample 2. Expanding consideration to several quantities, we provide
an exampl2 illustrating Corollary 2, which specifies bounds on coherent
probabilities for extreme events. Suppose that X,, X,, and X3 are logically

Independent quantities with the common realm R(X;) = {1,2,3,4,5}, as

»
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In Example 1. Table 5.2 exhibits the computed upp2r and lower bounds on
previsions for events of the form €y y ¢ = (Maxg ¢k <k | Xk - PRpoi) |2 €)

that would cohere with three different assertion confi igurations rega~ding the
quantities X,, X,, and X3. Along any row that begins with a specification of
M.K.€. appear the intervals for P(Ey x ) coherent with the mere assertions for

all 1,) of P(X,) = 2.2 and P(X;?) = 6.0, along with P(><~><-) appropriate to
Characterize the specified correlation p(X;,X ) that heads each column. [when
P(XiXi2) = (2.2,6.0), the correlations p(X; x,) equal t0 0, .25, and .75 are
implied, respectively, by the additional assertion of P(XX ) equal to 4.84, 5.13,

and S.71.] In the subsequent row are printed the lower and/or upper bound In
any Case for which the coherent bounding interval is restricted further by the
additional assertion of exchangeability regarding X, X2, and X3. Notice that the
additional restriction shrinks the interval further whenever it has any effect.

Table 5.2. Bounds™ cn P(Ep i ¢) necessary and sufficient for its coherence with
P(X;.X{2) = (2.2,6.0) and specified values of p(X;.X j»» without and with the
assertion of exchangeability for X, X5, and Xs.

p(X;iX;) 0.0 25 75

iKe

1,1,0.8 (267, 1.0 ] (267, 1.0 ] [.267,1.0 ]

1,1,1.8 [.025, .311] [.025, .311] [.025 , .288)
026 .233 233 233

1,2,0.8 (267 ,1.0 ] (267, 1.0 ] [.267 ., 1.0 |

1,2,1.8 [0 ,.333] [.025, .345] [.025, .318;
026 .233 233 233

2,1,0.8 [.042 , .920] [.059, 1.0 } (.101, 1.0 ]
.088 , .788] .068 .974

2,1,1.8 [0 ,.179) [ 0 ,.220] [ 0 ,.258]

421 .158 230

"The bounds presented are accurate to the nearest one-thousandth
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Example 3. This final example presents computational results
illustrating implications of Part Il of the Fundamental Theorem of Prevision for
a further conait/ona/ prevision. The context for this example continues from

Example 1. Remember that R(X) = {1,2,3,4,5}, and E¢ = (| X - P(X)| 2 €). Each

column of Table 5.3 is headed by vector values for an assertion of P(X,X?). Each
row Of the table identifies a specific event of the form E. In the intersection

of each row and column appear the bounds for a further assertion of P(X | Ee) If

it is to cohere with the assertion identified by the column heading. These
bounds were computed via the nonlinear programming problems identified in our
Fundamental Theorem of Prevision, Part [l. [Notice by the earlier Tabie 5.1, that
the prevision for each of the events E¢ listed in Table 5.3 I1s bounded away from

0 by the requirement that 1t cohere with the assertions of P(X,X2).] Figure 4.1,
which appeared in the previous section to itlustrate the proof of this part of our
theorem, is drawn to a scale that illustrates this example under the
specifications P(X,X2) =(2.2,6.0) and €= 1.2.

Table 5.3 Bounds™ on a conditional prevision P(X | E¢) necessary and sufficient
for its coherence with various specified values of P(X) and P(X2).

P(X,%2) (2.2,6.0) (2.2,7.0) (2.2,7.6)
Ee

(|%-2.2]20.8) [2200,27501 [2200,2333] [2200,2250 1)
(|x-22]212)  [1.222,27501 [1.857,2333] [2.059,2.250 ]
(|x-22]21.8)  [4.000,5000] [4.000,5.000] [ 4.429,5.000 ]

*The bounds presented are accurate to the nearest one-thousandth.

roving beyond these simple computational illustrations, we suggest by
example the vast potential for practical applications. Complex engineering
systems such as nuciear power plants or space vehicles are made up of many
component subsystems, with various dependencies between components, some
providing backups for others via intricate finkages. Typically, the operating
status of the overall system can be represented as a complicated logical
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function of the status of many components. Yet quality testing in the design
and construction of the system usually can be conducted only on a
component-by-component basis. After such testing, engineers may be able to
assert their previsions for the status of individual components under various
conditions, and perhaps even for a few of such components in con junction. But
It may be difficult for anyone, and even for 3 team, to assess directly the
operating status of the system as a whole. The linear progrumming method
underlying the fundamental theorem of prevision can be used to keep a running
track of the bounds on coherent prevision for the stati's of the system implied
by the changing assertions of engineers cocerning the status of components.

A more standard statistical application involves conditicnal prevision
assertions regarding characteristics of a finite population of which some
subgroup has been observed. One application with which we are familiar
concerns the annual milk yields of a group of 27 thousand dairy cows whose
Yrelds are regarded as exchangeable by a dairy expert. An exact yield has been
recorded for some 830 of these cows. Specific assertions made by the expert
about the yields from cows of this type can be inserted as input in the
programming problems to determine the bounds on cohering conditional prevision
assertions about the unobserved yields given the observed yields.

The practitioner may well react with horror at the huge computatior.al
dimension of the programming problems that could be involved in realistic
applications. (Annual yields from individual cows of this particular type can
range realistically from 12 thousand pounds to 40 thousand pounds, so even the
realm of each observation can be immense, depending on the fineness of
resolution in the reported yield.) Two quieting remarks are in order. First,
without elaboration here, let us mention that large reductions in the dimension
of the programming problems can be achieved algebraically by making more
efficient computational use of the exchangeahility which has been specified. In
example 2 discussed above, the dimension of the activity vector in our actual
computations was reduced from 125 to 35. Secondly, the computational time for
solving large linear programming problems 1s reduced from exponential to
polynomial time by the ellipsoid methods of Shor and Khachian (1979), and more
recently, Karmarkar (1984). The survey article by Bland, Goldfarb, and Todd
(1981) and the textbook introduction of Walsh (1985) are helpful. Coupling
these with the benefits of simultaneous processing achieved by supercomputers,
Or banks of microcomputers, we feel that even realistically large scale problems
could be accessible to computation.

37
Page 34




In this tentative happy mood, let us comment on the applicability of
the fundamental theorem of prevision to another sizeable practical problem.
Economists at several institutions regularly produce quarterly forecasts for
macroeconomic measurements of the U.S. economy. Brayton and Mauskopf (1985)
described a recent version of the Federal Reserve Board forecasting model
containing some 332 equations and 124 forecast variabies. In conventional
statistical terminology, it 1s recognized that the large size of such mogels, and
their many lags and nonlinear ities, preclude the application of simultaneous
estimation techniques. Thus, the many equations are usually estimated singly.
Litterman (1986) and McNees (1986) each noted that forecasters’ subjective
judgments are typically appended to mode!-based computations to produce a
useful forecast. These judgments are based on both an analysis of residuals
from individual equations and on intermediate monthly abservations of those
components of the quarterly statistics that are also recorded monthly.
Moreover, applied economists who are know ledgeable of even daily information
on particular sectors such as housing construction, inventories, capital
Investment, or capacity utilization can provide a wealth of relevant information
which is not amenable to systematic recording in a prior-formatted data file.
How are all these sources of information to be incorporated into a coherent
prevision assessment for quantities which are of interest for policy decisions 7
The fundamental theorem of prevision provides a computational framework in
which judgments based on a variety of information sources can be accumulated
and their conerency checked.

6. CONCLUSIONS

We hope that the substantive statistical results of this paper will
lead you to consider the Fundamental Thecrem of Prevision deserving of 113
appellation. Our concluding discussion will run in a philosophical vein. We use
both standard logical notation and the arithmetical notation for logical
relations. The latter was est-..1shed by Boole (1847) and was used by de
Finetti (1967). In arithmetic notation, the centence (€ E,) 1s expressed as the
product E,E,, and the sentence ~E is expressed a- (1-E). Thus, for example,

the sentence "E; implies E;", written in logical notation as ~[E,A~E,], Is

expressed arithmetically as {1 - [E,(1-Ep))}, or (1-E,+E,Ey). Such a sentence
Can be true or false (the arithmetic quantity can equal 1 or 0) depending on the
truth of the component propositions E, and E, (their numerical values).
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That the syllogism is without content has long been a subject of
logicians® musings. An important development in the programme of devising how
the notion of “content” could be integrated into the formal expression of
know ledge was Frege's (1879) distinction between a cantemplated sentence,
denoted by E, and an asserted proposition (by you, by someone), denoted by I-E.
Ostensibly, Frege was no friend of the subjectivist stance. Known among
statisticians for his ranting against “psychologism” in the field of logic (Frege,
1893), and perhaps for his provocation of Russell’s paradox (Van Heijenoort,
1967), he is unfortunately less well known for the acumen of many of his ideas
(Resnik, 1980). De Finetti, for example (1970, 2.6), mistakenly attributed the
proposed distinction between contemplated and asserted propositions to Koopman
(1940). And Jeffreys (1961, 1.§1.51) noted only its use by Whitehead and
Russell (1910). Lewy (1980) contains insightful critical discussion.

De Finetti lauded the distinction, however, remarking that we should
recognize prevision as an assertion (by you, by someone). But he declined to use
the assertion notation, supposing that this distinction would be clear from the
context. In two-valued, "deductive®, logic, your asserting something about a
sentence such as (E, = E,) may take only two possible forms: you may assert
that the sentence is true, k=(1-E, + E|E,) = 1; or you may assert that it is
false, = (1-E;+EEx)=0. This is the rule of two-valued logic. In the
many-valued logiC of coherent prevision, your assertion can take the form
P(1-Ey+EEz) = *, where this number may be any number in the interval [0,1].
Thus, the symc.: P replaces and expands the assertion symbol k= of two-valued

logtc..

Frege’s distinction allnws you to contemplate a sentence without
asserting either that it is true, or that it is false. Indeed, within the confines
of two-valued logic, this is the only weakening possible from the full throated
assertion that a sentence 1s true or that 1t 1s false. The syllogisms of deductive
logic specify equivalence relations among well-formed-formulae within the
logic. The considered formulae are equivalent irrespective of whether or not
anyor2 asserts the sentences to be either true or false. A person's willingness
1o be understood in this logic is signified by accepting the logical law of
roncontradiction, Eaf = E(1-E) = 0, along with all its consequences, such as
EvE=E+(1-E) - E(1-E) = 1. Thus, within this logic, any assertion regarding
3 sentence E that 1s equivaient to the assertion p=(EvE) = 1 amounts to no
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'ssertion at all about E. [t is a requndancy relative to the person's presumed
willingness to be understood In this logic. To be sure, no one can be forced o
make an assertion about any sentence that i1s not determined by the principle ¢f
noncontradiction. ‘’ou need neither assert E, k=E = 1, nor assert £, =E = 0. In
the extreme, you may find yourself in the non-assertive contemplative position-
(EvE) = 1, an assertion without content. The principle of conerency is merely
the extension of the principle of non-contradiction to the many-valued logic of
uncertain knowledge. As in deductive logic. there 1s no compulsion that anyone
make an assertion about any quantity. Just asi~(EvE) = 1 is a redundant
“assertion” without content for anyone committed to communication within the
confines of deductive logic, your partial assertion that your

P(X) € [min R(X), max R(X)] 15 a redundant assertion without content In the
logic of prevision. It amounts to no assertion at all If you accept the principle
of conerency, which is necessary for communication within this logic.

Long a stumbling block to the acceptability of subjective Bayesian
statistical procedures has been the objection “But for many quantities, | am in
no state of mind to assert my prevision. [ cannot now assert anything about X.”
Subjectivists have annoyedly responded, "Sure you can. It just takes effort on
your part to elicit your prevision. Just try to do the best you can.” Shafer
(1976) has spiritedly and repeatedly suggested that the (non)assertion
P(X) € [min R(X), max R(X)] is what represents one’s knowledge (that is, ack of
know ledge) in such instances. Both Shafer's insistence that probability bounds
are not meant to represent betting odds, and his general proposed schema of
inference have drawn appropriate criticism that his probability intervals have no
operational meaning, and that his schema supports Incoherent assessments. [See
for instance the comments of Lindley, of Good, and of Hill in the discussion to
Shafer (1982).] But Leamer's insight (1986) that a pounding statement, such as
P(X) € [a,b], could be interpreted operationally as a "bid-ask spread” resolves tha
impasse to accepting Shafer’s proposal in this instance. In the context of the
Fundamental Theorem of Prevision, this appears to be a beautiful resolution to
the search for a distribution that represents "ignorance”, a search which
unfortunately has Intrigued many. There is no ¢/s¢ribution that can represent

uniquely the assertion of ignorance: P(X) € [m‘n R(X), max R(X)]. It 15 a

previsicn polytope identical to the convex hull of R(X) that represents this lack
of knowledge, this lack of sufficient motivation to assert anytining about X.
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Their commitment to the operational-sub jective formulation of
probability notwithstanding, both Savage and de Firetti were disconcerted by the
practical problem of identifying one's prevision exéclly - though expressly no
more than by the prospect of measuring anything exact/y (de Finetti, 1970,
Appendix 19.3). Savage recorded his qualifications already in 1954 (Ch. 4).
Together (de Finetti and Savage, 1962) they wrote extensive commentary on the
relevant article of Smith (1961). And de Finetti's final appendices (1970,
Appendices 14-19) discuss the issues with his customary exhausting brilliance.
One 1mportant insight which eluded their analysis was the understanding of an
operational meaning to a partially asserted prevision polytope.

We submit that the complete extension of our understanding of
representations for all forms of uncertain knowledge, no matter how rich nor
how meagre, is provided by the Fundamental Theorem of Prevision. It supports
the conclusions which we have expressed above. Coherent uncertain know ledge
of 3 quantity vector is representable by a convex polytope within the convex hull
of the realm of the quantity vector. Central to de Finetti‘'s minimalist approach
to mathematical construction was his rejection of a "preconceived preference
for that which yields a unique and elegant answer even w/en the exact answer
should be ‘any valve lying between these limits’. * (1970, 6.3) The Fundamental
Theorem of Prevision applies the framework of weak mathematical formulations
to the characterization of states of uncertain knowledge by means of an
asserted prevision polytope.
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